
Journal of Experimental Botany, Vol. 58, No. 12, pp. 3385–3393, 2007

doi:10.1093/jxb/erm187 Advance Access publication 14 September, 2007

RESEARCH PAPER

Two members of the Arabidopsis CLC (chloride channel)
family, AtCLCe and AtCLCf, are associated with thylakoid
and Golgi membranes, respectively

Anne Marmagne1,*,†, Marion Vinauger-Douard1,*, Dario Monachello1,‡, Andéol Falcon de Longevialle1,§,
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Abstract

Though numerous pieces of evidence point to major

physiological roles for anion channels in plants, pro-

gress in the understanding of their biological functions

is limited by the small number of genes identified so

far. Seven chloride channel (CLC) members could be

identified in the Arabidopsis genome, amongst which

AtCLCe and AtCLCf are both more closely related to

bacterial CLCs than the other plant CLCs. It is shown

here that AtCLCe is targeted to the thylakoid mem-

branes in chloroplasts and, in agreement with this

subcellular localization, that the clce mutants display

a phenotype related to photosynthesis activity. The

AtCLCf protein is localized in Golgi membranes and

functionally complements the yeast gef1 mutant dis-

rupted in the single CLC gene encoding a Golgi-

associated protein.

Key words: Arabidopsis, CLC chloride channels, Golgi

membranes, thylakoids.

Introduction

Anion channels play important roles in plant physiology,
but the major limitation to investigating their biological
functions originates from our poor knowledge of their
molecular identity. Only genes belonging to the CLC
(chloride channel) family are known; they were first
described in tobacco (Lurin et al., 1996). In the Arabi-
dopsis genome, seven CLC genes could be identified
(AtCLCa–AtCLCg), and four of them (AtCLCa, -b, -c, and
-d) have been cloned so far (Hechenberger et al., 1996;
Geelen et al., 2000). The intracellular localization of these
four proteins was deduced from expression studies of
green fluorescent protein (GFP) fusion proteins in yeast
(Hechenberger et al., 1996), but direct evidence for their
subcellular localization and their transport activity in plant
cells was lacking. The physiological characterization of
Arabidopsis mutants suggested the involvement of
AtCLCa (Geelen et al., 2000) and AtCLCc (Harada et al.,
2004) in the regulation of nitrate levels in planta. Very
recently, the tonoplast localization of AtCLCa and its role
as a nitrate/proton antiporter in that membrane was
demonstrated, in agreement with its physiological function
in planta (De Angeli et al., 2006).
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It is shown here that fusion proteins of AtCLCe and
AtCLCf with fluorescent proteins (GFP/DsRed2) are
targeted to chloroplasts and Golgi vesicles, respectively,
in both onion epidermal cells and Arabidopsis protoplasts.
Furthermore, western blot analyses revealed the presence
of AtCLCe in the thylakoid membranes. Functional data,
a photosynthesis-related phenotype for clce mutants, and
the functional complementation of the yeast gef1 mutant
by AtCLCf are also reported. These results indicate the
functionality of the proteins and suggest putative roles in
agreement with their subcellular localization.

Materials and methods

Yeast strains, plant material, and culture conditions

All yeast strains were isogenic to the W303 (ura3-1 can1-100
leu2-3, 112trp1-1 his3-11, 15) strain. Two strains disrupted by the
insertion of the His synthesis gene in the ScCLC gene were used in
functional complementation tests, the haploid RGY86 and the
diploid RGY192 strains (Gaxiola et al., 1998). The strains were
kindly provided by R Gaxiola (University of Connecticut, Storrs,
CT, USA).
Experiments were performed using Arabidopsis thaliana, acces-

sions Columbia (Col) or Wassilewskija (WS). Sterilized seeds were
grown in vitro on standard culture medium ABIS as described by
Geelen et al. (2000).
Transient expression experiments of GFP fusion proteins were

performed on yellow onion bulbs (Allium cepa) bought in the local
market, or on protoplasts isolated from Arabidopsis cell suspensions
prepared according the procedure described in Thomine et al. (2003).

Yeast transformation and complementation tests

The positive control AtCLCd was cloned in the yeast expression
vector pRS1024 carrying ampicillin resistance and LEU2 markers
(Gaxiola et al., 1998). The cDNAs of AtCLCe and AtCLCf were
cloned in pDR195, a yeast expression vector modified according to
the Gateway system (Invitrogen), with ampicillin resistance and
URA3 as selection marker genes. Yeast transformation was per-
formed using the lithium acetate method (Clontech). Complementa-
tion tests were performed in two different discriminating growth
conditions as described in Gaxiola et al. (1998), basically: (i) a low
iron-containing medium (+ 0.6 mM ferrozine, Fluka) at pH 5.8, and
(ii) minimal growth media at pH 7 supplemented or not with copper
(0.1 mM CuSO4). Each construct was tested in both the haploid
RGY86 and the diploid RGY192 yeast strains.

Transient expression of GFP/DsRed2 fusions in onion

epidermal cells

The plasmid pSmRSGFP, expressing GFP under the control of the
cauliflower mosaic virus 35S promoter, was used for transient ex-
pression in onion epidermal cells. It encoded a soluble highly fluo-
rescent variant of jellyfish GFP optimized for use in higher plants
(Haseloff et al., 1997; Davis and Vierstra, 1998). AtCLCe or AtCLCf
cDNAs were cloned upstream of the GFP and in-frame with GFP in
pSmRSGFP using the BamHI site. Different constructs were used to
perform co-expression experiments. The SKL22 sequence (Mollier
et al., 2002), a peroxisomal targeting sequence, and SYTP, a threonyl
tRNA synthetase pre-sequence, were fused to DsRed2 in the pOL
vector (a gift of I Small, URGV, CNRS-INRA, Evry, France), and
used as markers of peroxisomes and plastids/mitochondria, respec-
tively. Biolistic bombardments were performed with a PSD-1000/He

instrument (Bio-Rad). Acceleration of gold microcarriers (1.6 lm)
coated with 1.25 lg of pure plasmid DNA (purified with Qiagen
mini-prep kits) was used to transform onion epidermal cells.
Bombardment parameters were as follows: vacuum, 28 inches Hg;
distance to target, 6 cm; helium pressure, 650 psi. Onion scales were
left for 12–24 h in the dark at 21 �C, and then epidermal tissues were
removed and layered in water on glass slides for microscopy.

Transient expression of GFP/DsRed2 fusions in

Arabidopsis protoplasts

Protoplasts were isolated from Arabidopsis cell suspensions, and GFP
fusions were transiently expressed in the protoplasts by polyethylene
glycol (PEG)-mediated transformation as described in Thomine et al.
(2003). AtCLCf cDNA was introduced in the pOL-DsRed2 vector.
Two Golgi markers, a-1,2 Man99:GFP (the first 99 amino acids of
a-1,2 mannosidase I) (Saint-Jore-Dupas et al., 2006) and a-1,4
FucT:GFP (a-1,4 fucosyltransferase; unpublished), were kindly
provided by V Gomord (UMR 6037, Rouen University); they were
used in co-expression experiments with AtCLCf:DsRed2 fusions.

GFP fluorescence visualization

Confocal microscopy was carried out using a confocal laser-scanning
microscope (Leica, confocal system TCS SP2). GFP and YFP
(yellow fluorescent protein) fluorochromes were excited by an argon
laser at 488 nm and 514 nm, respectively; DsRed2 was excited by
a helium–neon laser at 543 nm, and chlorophyll by a helium–neon
red laser at 633 nm. Fluorescence was collected between 500 nm and
535 nm for GFP and between 570 nm and 637 nm for DsRed2. In
Arabidopsis protoplasts, chlorophyll fluorescence was collected
between 675 nm and 750 nm.

SDS-PAGE and western blot analyses

Chloroplast subfractions had been prepared from Arabidopsis cell
suspensions (Ferro et al., 2002) and immunologically characterized
(Seigneurin-Berny et al., 2006); they were kindly provided by N
Rolland (CEA/CNRS/UJF/INRA, Grenoble, France). Western blots
were performed after SDS-PAGE of chloroplast subfractions (20 lg
per fraction), using a purified rabbit antibody raised against AtCLCe
synthetic peptides (Eurogentec) at a 1:1000 dilution for 3 h. The rat
anti-CLC3 (Sigma) was used at a 1:300 dilution for 3 h.

Screening for T-DNA insertion mutants by PCR

A primary PCR screen was performed on pooled genomic DNA from
45 312 independently isolated T-DNA-transformed Wassilewskija
(WS) lines (Bechtold et al., 1993; Bouchez et al., 1993). Twelve pairs
of primers were used, each including an AtCLCe gene-specific primer
distributed all over the gene and a T-DNA-specific primer for the left
and right borders of the T-DNA. A series of PCR screenings on
hyperpools (768 lines per pool), superpools (364 lines per pool), pools
(48 lines per pool), and finally 48 independent lines subsequently led
to the identification of the line of interest, clce-1. Searches in several
mutant collections led to the identification of another allele, clce-2, in
the SALK collection (SALK 010237; Columbia accession, Col). Each
selected homozygous line was back-crossed using wild-type pollen.
New homozygous mutant lines were then produced for their
phenotypic characterization. During that work, no clcf mutant was
identified in the course of the PCR screening of DNA pools.

Fluorescence measurements

The fluorescence induction kinetics were measured with a home-
built set-up described in Rappaport et al. (2007). Briefly, leaves
were cut and illuminated by continuous light (5300 lE m�2 s�1

light intensity) provided by electroluminescent diodes peaking at
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520 nm (35 nm full width at half-maximum). The fluorescence was
measured with a photodiode. Band-pass filters were used to cut off
the 520 nm light and select the fluorescence light. Prior to the
measurement, plants were dark-adapted for 2 h in order to allow the
deactivation of the Benson–Calvin cycle.

Results and discussion

AtCLCe and AtCLCf proteins are closely related to
prokaryotic CLC channels

AtCLCe (chromosome IV) and AtCLCf (chromosome I)
genes show different gene structures, with six and eight
exons, respectively. Southern blot analyses revealed that
these genes are present as single copies in the genome of
two different Arabidopsis accessions, Col and WS (data not
shown). AtCLCe encodes a polypeptide of 709 amino acids
with a calculated molecular mass of 75.4 kDa (At4g35440);
AtCLCf potentially encodes two proteins, a short one with
a 62.5 kDa calculated molecular mass (586 amino acids;
At1g55620.1) and a longer one with a calculated molecular
mass of 83.5 kDa (781 amino acids; At1g55620.2).
The AtCLCe and AtCLCf proteins are highly hydrophobic

as they showed up to 12 membrane-spanning domains, in
agreement with the crystallographic structure of two bacterial
CLCs resolved by high resolution X-ray and revealing the
existence of 18 a-helices (Mindell et al., 2001; Dutzler et al.,
2002). In the phylogenic tree based on protein sequence
comparisons (Fig. 1), most plant CLCs, including those of
Arabidopsis, belong to a eukaryotic branch, except AtCLCe
which defines a distinct subfamily with AtCLCf and some
tomato and rice CLCs, all closely related to bacterial CLC
proteins. The AtCLCe protein sequence displays 41% amino
acid identity with AtCLCf, and 24–34% identity with animal
and other plant CLC proteins. The large CLC family
includes anion channels such as the torpedo-fish CLC0
(Miller and White, 1980) and the mammalian CLC1
(Steinmeyer et al., 1991), but also proton-coupled chloride
transporters such as the bacterial CLCec1 (Accardi and
Miller, 2004) and the mammalian CLC-4 and CLC-5
(Picollo and Pusch, 2005). A refined analysis of structure/
transport mechanism relationships pointed out the key role
of two glutamate residues in the Cl–-binding region, E148
and E203, the latter being a hallmark that distinguishes
antiporters from channels (Miller, 2006). In plants,
demonstration of the antiporter activity of AtCLCa as a
nitrate/proton exchanger occurred very recently (De
Angeli et al., 2006). The AtCLCa sequence displays the
two glutamate residues as well as AtCLCb, -c, -d, and -g,
while both AtCLCe and AtCLCf possess only E148,
suggesting a different transport mechanism.

The AtCLCe protein resides in chloroplasts

The ARAMEMNON database (http://aramemnon.botanik.
uni-koeln.de/) did not give strong predictions for the
subcellular localization of AtCLCe either in chloroplasts
(0.49) or in mitochondria (0.39). Nevertheless, a close analy-

sis of the N-terminal region (MAATLPLCAALRSPVSSRRF)
indicated a global positive charge, enrichment in serine and
in proline, and the presence of an alanine in the second
position; altogether, these features are in favour of a plastid
localization. The maximum cleavage site was predicted
between the amino acids S17 and R18.
Transient expression in onion epidermal cells of a con-

trol construct containing GFP alone resulted in fluores-
cence throughout the cytosol and within the nucleus (Fig.
2A), as already reported by Haseloff et al. (1997). AtCLCe:
GFP expression resulted in a dotted fluorescence pattern,
restricted to mobile organelles located in the cytosol with
a diameter of about 3 lm (Fig. 2B), suggesting a plastid
localization (leucoplasts in the case of onion epidermal
cells; Carde, 1984). Co-expression of AtCLCe:GFP with
SYTP:Ds-Red, which is targeted to both mitochondria and
plastids, revealed that green and red fluorescence co-
localized to a high degree in plastids (Fig. 2C–E). In
addition, upon transient expression of the AtCLCe:GFP
construct in protoplasts from Arabidopsis cell suspen-
sions, a co-localization of the fusion protein (green fluo-
rescence) and chlorophyll (red fluorescence) was observed
(Fig. 2F–H), demonstrating the chloroplast targeting of
AtCLCe. To localize AtCLCe further, western blot analy-
ses were performed on chloroplast subfractions using both
anti-CLC3, an antibody directed against the rat CLC3, and
a purified IgG raised against two C-terminal regions of the
AtCLCe protein. The patterns obtained with anti-CLC3
could not be interpreted as it cross-reacted with peptides
in chloroplasts, envelope, and stroma fractions (data not
shown), but blots with anti-CLCe IgGs confirmed the
chloroplast localization and showed that AtCLCe resides
specifically in thylakoid membranes (Fig. 2I). Interest-
ingly, from transcriptomics data available in Genevesti-
gator tools (http://www.genevestigator.ethz.ch/at/), AtCLCe
expression is higher in green tissues compared with roots.
In seedlings, AtCLCe is expressed almost four times more
in cotyledons than in roots, and at an intermediate level in
hypocotyls (anatomy data sets). In other respects, looking
for functional clues, the mutant gene-chip data sets
show up-regulation of AtCLCe in lec1 (;2-fold), a leaf
developmental mutant, and in a gun1 gun5 double mutant
(;3-fold) altered in plastid signalling pathways during
de-etiolation. In contrast, AtCLCe expression is down-
regulated (;2-fold) in the pho3 mutant, in which carbon
metabolism is affected. Altogether, these data would
support a relationship between green tissue thylakoid
localization of AtCLCe and a potential function in
chloroplasts. This hypothesis was further investigated
searching for a photosynthetic phenotype in clce mutants.

Mutant clce plants display altered photosynthetic
activity

clce-1 and clce-2 homozygous mutant plants exhibit de-
velopmental and morphological traits similar to those of
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wild-type plants grown either in vitro or in the greenhouse
(data not shown). Looking for a specific phenotypic trait
of clce mutants which could be related to the chloroplast
localization of the protein, chlorophyll fluorescence was
measured to assess the photosynthetic activity in vivo.
High light intensities induced a strongly polyphasic

fluorescence time-course, as previously observed (Delosme,
1967), when the photochemical rate, i.e. the reduction rate
of QA, is faster than the QA

– reoxidation rate (Fig. 3). The
first initial rising phase reflects essentially the reduction of
QA (reviewed in Schreiber, 2002) and, for a given light
intensity, its rate is determined by the photosystem II
(PSII) antenna size and the photochemical properties of
PSII. The half-time of this phase was similar in clce-1,

clce-2, and wild-type plants, indicating that the light trap-
ping efficiency of PSII was unaffected by the mutation.
Consistent with this, the PSII quantum yields, as de-
termined by the ratio (Fm–F0)/Fm (Genty et al., 1989),
where F0 and Fm, respectively, stand for the fluorescence
yield when all PSIIs are photochemically active and
inactive, were similar (0.8260.3, 0.8060.4 for the wild
type and mutants, respectively). Interestingly, the clce-1
and clce-2 mutants displayed a marked phenotype, with
the fluorescence increase component, developing in the
10 ms time range, being significantly slowed down,
whereas the subsequent phase, occurring in the 100 ms
time range, remained unaltered (Fig. 3). As discussed in
Schansker et al. (2005), these two phases reflect the

Fig. 1. The plant CLC members are spread over two distinct subfamilies. The dendrogram indicates the degree of similarity between CLC proteins
from animals, yeast, bacteria, and plants: CLC0 (P35522) from Torpedo marmorata; HsCLC1 (P35523), HsCLC2 (P51788), HsCLC3 (P51790),
HsCLC4 (P51793), HsCLC5 (P51795), HsCLC-6 (P51797), HsCLC7 (P51798), HsCLCKa (P51800), and HsCLCKb (P51801), all from Homo
sapiens; StyCLCA (Q8ZRP8/AAL19167) and StyCLCB (AAL20409) from Salmonella typhimurium; GEF1 (P37020) from the yeast Saccharomyces
cerevisiae; CLC-ec1/EcCLCA (P37019) and EcCLCB (P76175) from Escherichia coli; SCLC (P74477) from Synechocystis sp.; CLCNt1 (Q881F4)
and CLCNt2 (Q9XF71) from Nicotiana tabacum; AtCLCa (P92941), AtCLCb (P92942), AtCLCc (Q96282), AtCLCd (P92943), AtCLCe
(Q8GX93), AtCLCf (Q8RXR2), and AtCLCg (P60300) all from Arabidopsis thaliana; StCLC1 (P93567) from Solanum tuberosum; LeCLC
(Q9ARC6) from Lycopersicon esculentum; and OsCLCa1 (Os01g65500), OsCLC2 (Os01g50860), OsCLC3 (Os02g35190), OsCLC4 (Os03g48940),
OsCLC5 (Os04g55210), OsCLC6 (Os08g20570), and OsCLC7 (Os12g25200), all from Oryza sativa. Arabidopsis CLCs are represented in boldface.
All CLC proteins are identified by Swiss-Prot/TrEMBL references (updated version from 2006), except rice CLCs. In that case, CLC-type channel
homologous genes were identified in the rice genomic database at NCBI (http://www.tigr.org) and correspond to the classification reported by
Diédhiou and Golldack (2006). Programs used were CLUSTAL X (Thompson et al., 1997) for whole protein sequence alignments and TreeView
(Page, 1996) for graphical output.
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disappearance of a quencher concomitant with the re-
duction of the plastoquinone pool, for the first one, and
with the reduction of the soluble PSI electron acceptors,
for the subsequent one. It is unlikely that AtCLCe activity
has direct consequences on the plastoquinone pool per se.
It is thus proposed that the alterations in the kinetics of
fluorescence changes induced by the illumination of dark-

adapted clce mutant leaves originate from indirect effects,
such as changes in the ionic strength or osmotic properties
of the lumen resulting from an impaired anionic perme-
ability of the thylakoid membrane. A CLC-type protein
might contribute to anion channel activities previously
reported on thylakoid membranes by Schönknecht et al.
(1988) in the higher plant Peperomia metallica, and by

Fig. 2. The AtCLCe protein is targeted to chloroplasts and resides in thylakoid membranes. (A–H) Confocal microscopy analysis of the transient
expression of various protein fusions in onion epidermal cells 24 h after bombardement (GFP fusions, A and B, co-expression of GFP and DsRed2
fusions, C–E) and in PEG-transformed Arabidopsis protoplasts (GFP fusions, F–H). (A and B) Results from the horizontal projection of different
images. (C–H) Unique sections. The white bar indicates the scale in one dimension (lm). (A) Control GFP; (B, C, and F) AtCLCe:GFP fusion; (D)
SYTP:DsRed2 fusion, a chloroplast/mitochondria marker; (G) chlorophyll fluorescence; E and H show merges of C (AtCLCe:GFP)/D
(SYTP:DsRed2) and F (AtCLCe:GFP)/G (chlorophyll) images, respectively. (I) Western blot analysis of four different fractions, chloroplasts (Chl),
envelope (Env), thylakoid (Thy), and stroma (Str). The IgG raised against AtCLCe immunogenic peptides revealed a specific signal in thylakoid
membranes, at the expected size.
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Potossin and Schönknecht in the alga Nitellopsis obtusa
(1995, 1996), but no direct evidence for such anion
currents in Arabidopsis photosynthetic thylakoid mem-
branes has been provided so far. Such modifications in the
intra-thylakoid ionic status could modify the overall
architecture of the thylakoid, and hence the reduction of
the plastoquinone pool, since the formation of the grana
stacks is known to depend on the ionic strength.

The AtCLCf protein is targeted to Golgi vesicles

AtCLCf:GFP fluorescence in onion epidermal cells was
localized in numerous small (1 lm diameter) organelles
showing a Brownian movement throughout the cytosol
(Fig. 4A). The size of these structures allowed plastids to
be excluded, but could correspond to several types of
organelles, mitochondria, peroxisomes, or Golgi vesicles.
Co-expression of AtCLCf:GFP with SYTP:Ds-Red (Fig.
4B) led to the exclusion of mitochondrial and chloroplas-
tic locations, as green and red fluorescences did not
overlap. Similarly, the green fluorescence of AtCLCf:GFP
did not match the distribution of the red fluorescence
displayed by a fusion protein targeted to peroxisomes,
SKL22:Ds-Red (Fig. 4C). Treatment of onion epidermal
cells expressing AtCLCf:GFP with brefeldin-A (BFA),
a potent inhibitor of endocellular traffic, induced aggrega-

tion and redistribution of the green fluorescence (data not
shown), suggesting that the AtCLCf:GFP protein was
associated with a BFA-sensitive compartment. This
observation is in agreement with a Golgi targeting of the
AtCLCf protein.
To analyse further the subcellular compartmentation of

AtCLCf, transient co-expression of AtCLCf:DsRed2
fusions with fluorescent markers of cis- and trans-Golgi
cisternae was achieved in protoplasts from Arabidopsis
cell suspensions. In tobacco leaves transformed by agro-
infection, the a-1,2 mannosidase I is localized in both
endoplasmic reticulum (ER) and cis-Golgi subcompartments
(Saint-Jore-Dupas et al., 2006). In the present biological
system, Man99:GFP also showed a dual compartmenta-
tion (Fig. 4D). Red fluorescence of AtCLCf:DsRed2 (Fig.
4E) and green fluorescence of Man99:GFP (Fig. 4D)
completely co-localized in cis-Golgi vesicles, but not in
the ER (Fig. 4F), suggesting a targeting of AtCLCf to the
early Golgi compartment. Co-expression of AtCLCf with
a protein targeted to trans-Golgi cisternae (Saint-Jore-
Dupas et al., 2006) was also performed. A partial co-
localization was observed between a trans-Golgi marker,
FucT:GFP (V Gomord and M-C Kiefer-Meyer, personal
communication) (Fig. 4G), and AtCLCf:DsRed2 (Fig. 4H,
I). Similar fluorescence patterns were obtained when co-
expressing AtCLCf:GFP and ST:DsRed2 (the first 52
amino acids of the sialyl transferase) fusions (data not
shown). These results obtained in a homologous expres-
sion system confirm that AtCLCf would reside in Golgi
vesicles. A refined analysis revealed that the fusion
protein is mainly targeted to the early cis-Golgi subcom-
partment, and to some extent to trans-Golgi cisternae.
This result contrasts with a report on the chloroplast
localization in spinach of a putative CLC channel sharing
sequence similarity with AtCLCf (Teardo et al., 2005). In
this study, biochemical and mass spectrometry analyses
relied on the use of a combination of heterologous tools
that may lead to confusing results. The authors themselves
do not exclude the hypothesis of the simultaneous pres-
ence of CLCf and/or CLCe in other subcellular compart-
ments in spinach.
The present confocal microscopy analyses revealed that

in Arabidopsis, AtCLCe and AtCLCf reside in different
membrane systems, i.e. thylakoid and Golgi membranes,
respectively, suggesting that these proteins might play
distinct biological roles.

AtCLCf functionally complements the yeast gef1 mutant

The yeast CLC protein, ScCLC, has been localized in the
Golgi apparatus, most of the protein residing in its medial
portion (Gaxiola et al., 1998; Schwappach et al., 1998)
but also in the late- or post-Golgi vesicles (Gaxiola et al.,
1999). Disruption of the ScCLC gene in yeast (gef1
mutant) led to a growth defect on iron-limited medium

Fig. 3. The clce mutants display photosynthesis-related phenotypes.
Polyphasic fluorescence increases as a function of the illumination time.
The light intensity was 5300 lE m�2 s�1. The leaves from plants dark-
adapted for 2 h were cut and immediately used for the experiments.
Fluorescence changes were measured on leaves harvested from clce-1
and clce-2 mutants and wild-type plants, WS and Col, respectively.
Wild-type genotypes present the same pattern. The traces are represen-
tative of five different experiments performed with leaves from five
different plants.
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containing non-fermentable carbon sources (Greene et al.,
1993). AtCLCd was first demonstrated to restore iron-
limited growth of the yeast mutant gef1 (Hechenberger
et al., 1996). Later on, Gaxiola et al. (1998) showed that
other phenotypes of the gef1 mutant, the pH-induced
phenotype and salt sensitivity, were also suppressed by
complementation with AtCLCd and AtCLCc, but not by
AtCLCa. The ability of AtCLCf and AtCLCe functionally
to complement growth defects of the mutant strains
RGY86 (haploid) and RGY192 (diploid) either on a low-
iron medium or on a high pH medium was tested. Figure 5
illustrates the results obtained in the haploid strain RGY86
gef1. Similar pictures were obtained for the diploid strain
(data not shown). No growth was observed in discriminat-
ing growth conditions when yeast strains were trans-
formed with the corresponding empty vectors pDR195
and pRS1024 (data not shown). The gef1 mutant is unable
to grow on non-fermentable carbon sources in the absence
of high iron concentrations (Fig. 5A, B). This growth
defect is suppressed in gef1 strains that express the
Arabidopsis CLCf, but not AtCLCe (Fig. 5A, B). The
gef1 mutant also failed to grow on the minimal media SD

or SGE, buffered at pH 7 (Fig. 5D, F), though they grew
well on a minimal medium YPD (Fig. 5C); this phenotype
was also rescued by the expression of AtCLCf (Fig. 5D,
F). The addition of copper allows growth of all genotypes
(Fig. 5E–G), probably because it restores in gef1 back-
ground the high affinity iron uptake through the Fet3–
Ccc2 complex (Gaxiola et al., 1998). In all discriminating
growth conditions, expression of AtCLCe did not comple-
ment the two yeast mutant strains, probably as a conse-
quence of its chloroplast localization (Fig. 5). In all cases,
AtCLCf expression in the gef1 background was able to
restore growth of the mutant strains although at a lower
rate compared with the wild-type strain or with the pos-
itive control represented by the gef1 strain expressing
AtCLCd (Fig. 5).
Recently, AtCLCd has been shown to co-localize in the

trans-Golgi network with VHA-a1, a subunit of the proton-
transporting V-type ATPase (Von der Fecht-Bartenbach
et al., 2007). These data suggest that AtCLCd would be
involved in the transport of a counter-anion for compen-
sating acidification of the luminal pH in the trans-Golgi
network required during endocytic and secretory

Fig. 4. The AtCLCf protein is targeted to the Golgi membranes. Confocal microscopy analysis of the transient expression of various protein fusions
in onion epidermal cells 24 h after bombardement. (A) GFP fusions; (B, C) co-expression of GFP and DsRed2 fusions; (D–I) co-expression of GFP
and DsRed2 fusions in PEG-transformed Arabidopsis protoplasts. (A) AtCLCf:GFP fusions; (B) merge of AtCLCf:GFP and co-expressed fusions of
a chloroplast/mitochondria marker SYTP:DsRed2; (C) co-expression of AtCLCf:GFP and fusions of a peroxisome marker SKL22:DsRed2; (F) merge
of (E) AtCLCf:DsRed2/(D) a-1,2 Man99:GFP; (I) merge of (H) (AtCLCf:DsRed2)/(G) a-1,4 FucT:GFP. The white bar indicates the scale in one
dimension (lm).
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processes (Dettmer et al., 2006). The present data
illustrate that AtCLCf is functional in yeast cells and
provide evidence for its ability to complement the pH-
dependent growth phenotype of the gef1 mutant. AtCLCf
might thus play a role in delivering anions to facilitate the
luminal acidification of the cis-Golgi subcompartment.

Concluding remarks

Here the molecular cloning and preliminary biological
characterization of AtCLCe and AtCLCf, two new Arabi-
dopsis genes encoding putative plant CLC anion channels,
are reported. In contrast to AtCLCa, these two proteins are
located in membrane systems which are not easily
amenable to electrophysiology techniques, and this ham-
pers progress to demonstrate their genuine channel or
transporter activity. However, the identification of the
subcellular localization of the proteins in thylakoid or
Golgi membranes, together with mutant analysis and yeast
complementation assays, provides the first clues as to their
cellular functions. Such functions appear specific to plant
cells (AtCLCe and photosynthesis) or similar to those
described for yeast and some of the mammalian CLCs
(AtCLCf and acidification of Golgi or endosomal vesicles)
(reviewed in Jentsch, 2007).
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Thomine S, Lelièvre F, Debarbieux E, Schroeder JI, Barbier-
Brygoo H. 2003. AtNRAMP3, a multispecific vacuolar metal
transporter involved in plant responses to iron deficiency. The
Plant Journal 34, 685–695.

Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F,
Higgins DG. 1997. The CLUSTAL X windows interface: flexible
strategies for multiple sequence alignment aided by quality
analysis tools. Nucleic Acids Research 25, 4876–4882.

Von der Fecht-Bartenbach J, Bogner M, Krebs M,
Stierhof Y-D, Schumacher K, Ludewig U. 2007. Function
of the anion transporter AtCLC-d in the trans-Golgi network.
The Plant Journal 50, 466–474.

AtCLCe and AtCLCf in thylakoids and Golgi membranes, respectively 3393

 at INIST-CNRS on 16 December 2009 http://jxb.oxfordjournals.orgDownloaded from 

http://jxb.oxfordjournals.org

